Journal of Organometallic Chemistry, 108 (1976) 371—380 © Elsevier Sequoia S.A., Lausanne — Printed in The Netnerlands

THE INTERNAL ROTATION OF ACYL GROUPS IN ACYLFERROCENES. A ¹H AND ¹³C DNMR STUDY

JAN SANDSTRÖM * and JOSÉ SEITA

Division of Organic Chemistry 1, Chemical Center, University of Lund, P.O. Box 740, S-220 07 Lund 7 (Sweden)

(Received October 30th, 1975)

Summary

The barriers to acyl group rotation in a series of acylferrocenes, including 1,1'-diacetylferrocene, have been determined by ¹H and ¹³C DNMR. Complete lineshape analysis over wide temperature ranges gave ΔG_{173}^{\neq} 8.79 ± 0.03 kcal mol⁻¹, ΔH^{\neq} 7.5 ± 0.3 kcal mol⁻¹ and ΔS^{\neq} -8 ± 2 cal mol⁻¹ K⁻¹ for [²H]formyl-ferrocene and ΔG_{173}^{\neq} 8.51 ± 0.02 kcal mol⁻¹, ΔH^{\neq} 7.1 ± 0.2 kcal mol⁻¹ and ΔS^{\neq} -8 ± 2 cal mol⁻¹ K⁻¹ for [²H]formyl-ferrocene and ΔG_{143}^{\neq} 6.8 ± 0.2 kcal mol⁻¹, ΔH^{\neq} 7.1 ± 0.2 kcal mol⁻¹ and ΔS^{\neq} -8 ± 2 cal mol⁻¹ K⁻¹ for acetylferrocene. The unexpectedly high barrier in differrocenylketone (ΔG_{143}^{\neq} 6.8 ± 0.2 kcal mol⁻¹) is interpreted in terms of strain in the transition state, and the relatively low barrier in 1,1'-diacetylferrocene (ΔG_{163}^{\neq} 7.8 ± 0.3 kcal mol⁻¹) is ascribed to an interannular effect.

Introduction

The π -electron interaction between an aromatic or heteroaromatic ring and an acyl group is manifested by a twofold barrier to rotation of the acyl group. Following the pioneering work of Anet and Ahmad [1] and of Dahlqvist and Forsén [2], barriers to acyl rotation have been measured in a great number of aromatic and heteroaromatic systems, mostly using the ¹H dynamic NMR (DNMR) technique [3–9] but more recently also the often more powerful ¹³C DNMR technique [10,11].

The effect of para-substituents in aromatic aldehydes and ketones [1,3,10]and a comparison of the free energy barriers to E-Z rotation in furanaldehyde $(10.3 \text{ kcal mol}^{-1} [2])$ and 1-methyl-2-pyrrolaldehyde $(12.5 \text{ kcal mol}^{-1} [5])$ indicate, in agreement with ground-state expectations, that the barrier increases with increasing electron-donating capacity of the ring. This picture has been corroborated by a quantitative analysis of the interaction of donor and acceptor groups through benzene rings, using rotational barriers [9]. Since the ferrocenyl group is one of the most powerful electron-releasing

fz)		
 ເມ	a.	
5	Ó	
2		
E		
, E	0.3	
Hz)		
134 (4	
(Z		
5 (H	88	
7	4	
(Hz		
J24	1.2	
3		
Tz)		
23 (1	58	
	N	
ê	117 1138 138	
5(1	5 5 5	
(H ₅)	90042	
δ δ C	4,24 4,17 4,17 4,17	
	<u>م م م</u>	
(3,4	578 568 468 561 562 475	
9	र र र र र र	
2,5)	768 757 757 757 757 79 79 79	
5.5	44444	
	sene .	방 역 가지는 것이다. 것이가 모이는 것은 것이다. 동 <mark>프</mark> 아이는 동물은 이야가 하는 것이가 물건을 수 있다.
	2 11 00	
P	s lite	8 0
uno	CH3 Ph	
B	1-D 2000 11-D	9 1
1.3		병 구성 관계가 가지 않는 것이 없는 것이 않는 것이 않는 것이 않는 것이 없다.

aromatic groups, we have found it of interest to study the rotational barriers in ferrocenaldehyde, acetylferrocene, benzoylferrocene, and diferrocenylketone by ¹H and ¹³C DNMR technique. In order to study the interannular interaction [12,13], 1,1'-diacetylferrocene was also included. To simplify the spectrum, the ¹H study of ferrocenaldehyde was performed on the [²H] formyl derivative.

Experimental

Synthetic part. Ferrocenaldehyde (FcCHO) [14], acetylferrocene (FcCOCH₃) [15], benzoylferrocene (FcCOPh) [16], diferrocenylketone (Fc₂Co) [17], and 1,1'-diacetylferrocene [18] were prepared by literature methods. Ferrocene-[²H]aldehyde (FcCDO) was prepared by reduction of methyl ferrocenemonocarboxylate with lithium aluminium deuteride (70% yield), followed by oxidation of the [²H₂]ferrocenylcarbinol with "active" manganese dioxide [19] in chloroform to give the desired compound in 65% yield. The identity and isotopic purity of the labelled aldehyde (after purification via the bisulphite addition compound) and of the intermediate carbinol were checked by GLC and by infrared, NMR and mass spectra.

NMR spectra. The ¹H spectra were recorded on a JEOL Model JNM-MH-100 NMR spectrometer, equipped with a standard variable temperature attachment (VT 3-c), and operating in the internal lock mode with TMS as the lock signal. The chemical shifts were measured by a Hewlett—Packard Model 3734A frequency counter. The spectra were recorded at a sweep rate of 0.216 Hz sec⁻¹, and the radio frequency field was kept well below the saturation level.

The ¹³C spectra were recorded on a JEOL Model FX 60 FT NMR spectrometer equipped with an NM-5471 temperature controller and an NM-5490 variable temperature adapter. Some spectra were also recorded on a VARIAN Model XL-100-15 NMR spectrometer equipped with a V-6040 temperature controller and a Model VFT-100-X Fourier transform system.

The solvent for the ¹H spectra was dichlorofluoromethane, and for the ¹³C spectra the same solvent with 20% (v/v) of $[^{2}H]_{6}$ acetone to provide a lock signal. The concentration was 0.5 *M* except for diferrocenylketone and 1,1'-diacetyl-ferrocene, which could only be obtained as 0.15 *M* solutions. TMS was added to serve as an internal reference and to provide the ¹H lock signal. The samples were degassed by several freeze—thaw cycles under high vacuum, before being sealed off.

The temperatures were measured as described previously [20]. In the case of the ¹³C spectra, calibration was made under the same decoupling conditions as when the spectra were recorded. Due to the long recording times, the temperatures for the ¹³C spectra are accurate only to $\pm 1^{\circ}$ C, whereas the temperatures for the ¹H spectra in most cases varied over less than 0.6°C.

Evaluation of rate constants and thermodynamic parameters

(a) ¹H spectra. Analysis of the ¹H spectra of FcCDO and FcCOCH₃ at ambient temperature was performed by the program UEAITR/Flex 8 [21], and the resulting spectral parameters are found in Table 1. The assignments are based on those of Rausch and Siegel [22]. Due to a small residual coupling to the ²H atom, the analysis of the FcCDO spectrum did not give an entirely

reliable result. However, calculation of the spectrum using the coupling constants derived for $FcCOCH_3$ gave very good agreement, and these were used in the lineshape calculations for both compounds. Due to the low barriers, no resolved spectra could be obtained in the slow exhange limit, and J_{24} and J_{35} had to be given the same time-average value, though these couplings may well be slightly different when the acyl group rotation is slow.

The rate constants for FcCDO and FcCOCH₃ were evaluated by visual comparison between experimental spectra and spectra calculated by the program DNMR3 [23] for an ABCD \Rightarrow BADC exchange (Fig. 1). A non-negligible temperature dependence of the time-average chemical shifts was observed in the fast exchange limit, and the shifts for the exchange broadened spectra were obtained by adjustment at low exchange rates and extrapolation to regions of higher exchange rates. T_2 values were determined from the linewidth of the signal of the unsubstituted ring.

The rate constants (k) for the internal rotation in FcCDO were determined at 17 temperatures in the range 158 to 189 K, and from the slope and intercept of the least squares plot of $\ln(kT^{-1})$ vs. T^{-1} (Fig. 2), ΔH^{\neq} and ΔS^{\neq} could be calculated. Similarly, FcCOCH₃ was studied at 19 different temperatures in the range 155 to 183 K. The results are found in Table 2.

By using the simple coalescence expression 1 * on the 2- and 5-proton signals,

^{*} Derived from the expression for a coalescing doublet [24] in conjunction with the Eyring equation [25].

TABL	æ 2					
THER	MODYNAMIC PARAMET	ERS FOR THE ACY	L ROTATION I	N FcCOR (in S	.I. units in parent	heses)
R	ΔG_{173}^{\neq} (kcal mol ⁻¹)	ΔH^{\neq} (kcal mol	$^{-1}$) ΔS^{\neq} (cal	mol ⁻¹ K ⁻¹)		
D	8.79 ± 0.03 ^a	7.5 ± 0.3	—7.7 ±	-1.8		
CH3	(36.8 ± 0.1) 8.51 ± 0.02	(31.2 ± 1.3) 7.1 ± 0.2	(—32.2 ± 8.4 ±	7.5) 1.5		
	(35.6 ± 0.1)	(29.7 ± 0.8)	(35.1 ±	6.3)		

^a Calculated at the 95% confidence level, assuming only random errors.

and for FcCDO also the 3- and 4-proton signals, approximate free energy

$$\Delta G_{T_c}^{\neq} = 0.004573 \ T_c \ (9.972 + \log T_c - \log \Delta \nu_0)$$

barriers could be calculated. Since the values thus obtained (Table 3) deviated by no more than 0.1 kcal mol⁻¹ from those obtained by the complete lineshape analysis, it was regarded as permissible to use expression 1 also for FcCOPh and Fc₂CO, for which the coalescence could be observed but no resolved lowtemperature spectra could be obtained. The values obtained are found in Table 3. This technique could not be used with 1,1'-diacetylferrocenes since no splitting was observed in the ¹H spectrum down to -140° C. As is shown by the ¹³C spectra (vide infra) this is due to an accidental overlap of the 2- and 5-proton signals rather than to a low barrier.

(1)

(b) ${}^{13}C$ spectra. The ${}^{13}C$ spectra of a large number of ferrocene derivatives, including FcCHO, FcCOCH₃, and FcCOPh, have been studied in deuteriochloroform solution by Nesmeyanov et al., [26] and our results are quite similar in spite of the difference in solvent (Table 4). At ambient temperature the C₂, C₅ signal in the FcCHO spectrum coincides with the signal of the carbon atoms in the unsubstituted ring, and in the FcCOCH₃ spectrum the difference is only 0.3 ppm. Consequently, at lower temperatures the signal from the unsubstituted ring falls between the C₂ and C₅ signals, which complicates the lineshape analysis. The rate constants for acyl rotation in FcCHO and FcCOCH₃ were determined by visual fitting of the experimental spectra to curves calculated by superposition of the spectra of two exchanging doublets [27] (C₂-C₅ and C₃-C₄). The results (Table 5) agree well with those obtained from ¹H spectra

ç	Т	1	١	в	1	F	Э	1	

FREE ENERGY BARRIERS OBTAINED FROM ¹H COALESCENCE DATA

Compound	Δν(H2)	T _c (K)	$\Delta G_{T_{\mathbf{C}}}^{\neq}$ (kcal r	nol ⁻ⁱ)	
FeCHO FeCOCH3 FeCOPh	12.2 ^a 5.6 b 7.9 a 40 ^a	173 168 163 144	8.8 ± 0.2 8.8 ± 0.2 8.4 ± 0.2 6.9 ± 0.2		
FC2CO	37-	143	6.9 ± 0.2		

a 102-v51. b 103-v41.

Compound δ(1)) δ(2,5)	δ(3,4)	δ(α)	δ(unsubs	t.) δ(CH ₃)
FcCHO 80.4	4 70.1	76.3	193.6	70.1	
FcCOCH ₃ 80.1	1 70.1	72.8	202.0	70.4	27.4
FeCOPh 79.0	72.0	73.1	199.3	70.7	
1.1-Diacetyl- 81.7	7 71.6	74.1	201.2		27.7
ferrocene					

¹³C NMR CHEMICAL SHIFTS ^a FOR ACYLFERROCENES IN CHCl₂F WITH 20% (CD₃)₂CO AT 30[°]C

^a In ppm downfield from TMS.

TABLE 5

RATE CONSTANTS AND FREE ENERGY BARRIERS IN ACYLFERROCENES DERIVED FROM ¹³C NMR SPECTRA

Compound	Δν (Hz)	<i>T</i> (K)	k (sec ⁻¹)	ΔG^{\neq} (kcal mol ⁻¹)
FcCHO ^a	103.8 ^b	179	67	8.80
	7.4 ^C	177	50	8.80
1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		173	28.6	8.78
		169	18.2	8.78
FcCOCH3	57.0 ^b	199	1670	8.54
	7.0 C	186	333	8.56
		184	290	8.52
		179	200	8.41
		166	25	8.46
FcCOPh d	186	151	413	6.8 ± 0.2
1,1'-Diacetyl- ferrocene ^d	53 ⁶	163	117	7.8 ± 0.2
		the standard		 A set of the set of

^a By complete lineshape analysis. ^b $|v_2 - v_5|$. ^c $|v_3 - v_4|$. ^d By the coalescence approximation.

except for the values at the lowest temperatures. The deviations may be due to an extra broadening caused by overlap with the signal from the unsubstituted ring. The error introduced by this effect becomes progressively more serious as the exchange broadening diminishes. The free energy barriers for FcCOPh and 1,1'-diacetylferrocene were determined by the coalescence approximation 1 applied to the C_2 and C_5 signals (Table 5), wheras Fc_2CO was too insoluble in the solvent used to give a resolved low temperature spectrum.

The exchange broadened ¹³C spectra of FcCHO and FcCOCH₃ were calculated on a Hewlett—Packard Model 9820A calculator and plotted on a Model 9862A plotter from the same company.

Discussion

(a) Comparison of the barriers in FcCHO and $FcCOCH_3$ with those in the benzene analogs

By measuring the basicity of FcCOCH₃ and correlating it with those of substituted acetophenones, Arnett and Bushick [28] derived a σ^+ value of 1.54 for the ferrocenyl group on a scale where σ^+ for phenyl is zero, for *p*-anisyl -0.7and for *p*-dimethylaminophenyl -1.7 [29]. A similar comparison of the basicity of Fc₂CO with that of a series of benzophenones gave σ^+ –1.09. Drakenberg et al. [10] found a good linear correlation between the free energies of activation and the σ^+ values for *para* substituents in a series of benzaldehydes. Using their ΔG^{\neq} values and assuming the same ΔS^{\neq} value for all compounds, a ρ value of +1.89 ± 0.17 for the aldehyde group rotation at 173 K can be deduced. The ΔS^{\neq} value for the benzaldehydes was taken to be 1.7 cal mol⁻¹ K⁻¹ as determined by a complete lineshape study of *p*-dimethylaminobenzaldehyde in a 1:1 mixture of dichlorofluoromethane and chlorodifluoromethane [10], (cf. the value of 2.5 cal mol⁻¹ K⁻¹ in dichloromethane [9]). This ρ value together with the σ^+ value from FcCOCH₃ gives an expected ΔG_{173}^{\pm} value of 9.9 ± 0.2 kcal mol⁻¹ for FcCHO, notably higher than the observed value of 8.8 kcal mol⁻¹.

378

This analysis shows that the capacity of the ferrocenyl group to promote oxygen protonation in FcCOCH₃ is distinctly higher than its capacity to impede rotation in FcCHO. The difference may have several causes. One is the carbenium ion character cf the protonated FcCOCH₃, which may lead to stabilization through interaction of iron orbitals with the C_a atom, frequently discussed for ferrocenylcarbonium ions [30]. It is also possible that the transition state to rotation of the acyl group is stabilized by an interaction between an oxygen lone pair and an empty iron 4p orbital. In that case, the rotation should have one preferred pathway, which will decrease the entropy of activation by 1.4 cal mol⁻¹ K⁻¹ besides lowering the ΔH^{\neq} value. However, this effect is not sufficient to explain the low activation entropies in FcCHO and FcCOCH₃ compared with those in the aromatic aldehydes. It is possible that changes in solvation and/or in inter-ring rotation [31] may be involved, but at present no satisfactory model for treating these effects is available.

The small barrier difference between FcCHO and FcCOCH₃, 0.4 kcal mol⁻¹ in ΔH^{\neq} , is also of some interest. As can be seen in Table 6, the barrier difference between the formyl and acetyl derivatives in the benzene series is considerably larger, 1.6–2.8 kcal mol⁻¹. This difference is mainly steric in origin [34], and in the case of dimethylamino compounds the initial state strain in the acetyl derivative is probably increased by the higher twofold torsional barrier, leading to a lower observed barrier and a large barrier difference. As can be expected, this difference is smaller in the five-membered heterocyclic analogs (0.8–1.4 kcal mol⁻¹), and the value for the ferrocene analogs, while still smaller, fits well into this picture.

(b) Comparison of the barriers in FcCOPh and Fc_2CO

The barriers calculated for these compounds from the observed rate constants at coalescence are both 6.9 kcal mol⁻¹. However, for strict comparability the rate constant for Fc₂CO should be divided by two, since the probability of a ferrocene group rotation is twice as large in Fc₂CO as in FcCOPh, other things being equal. This gives a ΔG^{\neq} value of 7.1 kcal mol⁻¹ for Fc₂CO, which is unexpectedly high. One should rather predict a lower ΔG^{\neq} value for Fc₂CO than for FcCOPh. The explanation may be found in strain in the transition state. Fc₂CO has a transoid structure [38], and if the transition state approaches the cisoid arrangement, extra steric strain may build up. Furthermore, the initial state steric strain must be larger in FcCOPh than in Fc₂CO, a factor which contributes to the observed effect.

TABLE 6

 $\Delta G^{\neq} / \Delta H^{\neq} / V_2$ (kcal mol⁻¹) Ref. Compound Phase Method 4.92 PhCHO Gas TR 32 Gas Microwave 4.90 33 Gas Emp. force-field 4.90 34 ¹H DNMR Solution 7.9 1 Solution 13C DNMR 7.6 10 PhCOCHa Gas IR 3.1 32 Emp. force-field Gas 3.14 34 Solution Estimated 6.3 35 13C DNMR Solution 5.9 36 p-(CH₃)₂NC₆H₄CHO Solution ¹³C DNMR 11.2 10 p-(CH3)2NC6H4COCH3 Solution ¹H DNMR 8.3 9 2-Furanaldehyde Solution ¹H DNMR 10.3 ^a 2 8.9 ^a ¹H DNMR 2-Acetylfuran Solution 4 10.2 ^b ¹H DNMR 1-t-Butyl-3-pyrrol-Solution 37 aldehyde 9.4 ^b 1-t-Butyl-3-acetyl-Solution ¹H DNMR 37 pyrrole

LITERATURE VALUES FOR ROTATIONAL BARRIERS IN AROMATIC AND HETEROAROMATIC -C-FORMYL AND C-ACETYL COMPOUNDS

379

^a $E \rightarrow Z$. ^b Conformers not stated.

(c) Interannular interaction in 1,1'-diacetylferrocene

The question of interannular interaction in ferrocenes has not been conclusively settled. Rosenblum et al. [13] found the UV-visible spectrum of 1-p-nitrophenyl-1'-anisylferrocene to be a composite of those of 1-p-nitrophenyl- and 1-anisyl-ferrocene. It may be argued that broad UV bands are not ideally suited for measuring small conjugation effects, and furthermore both substituent groups are electron acceptors in relation to ferrocene. It is also known that introduction of a deactivating substituent in one ferrocene ring lowers the rate of electrophilic substitution in the other ring quite drastically [13]. This effect, however, is explained by the mechanism of the reaction, proceeding through initial attack of the electrophile on the iron atom, utilizing the ferrocene e_{2g} orbital, which has considerable lone pair character. The deactivating substituent is considered to operate mainly by decreasing the availability of the electrons in the e_{2g} orbital [13].

The rotational barrier of 1,1'-diacetylferrocene is lower than that of FcCOCH₃ by 0.7 kcal mol⁻¹, a difference well above the experimental error. This may be a true interannular effect, in which one acetyl group inductively diminishes the interaction of the other ring with its acetyl group.

Acknowledgement

We are grateful to the Swedish Natural Science Research Council and to the Royal Physiographic Society of Lund for financial support. We also thank Dr. T. Drakenberg for communicating his experimental results prior to publication.

Réferences

380

- 1 F.A.L. Anet and M. Ahmad, J. Amer. Chem. Soc., 86 (1964) 119.
- 2 K.-I. Dahlqvist and S. Forsén, J. Phys. Chem., 69 (1965) 4062.
- 3 R.E. Klinck, D.H. Marr and J.B. Stothers, Chem. Commun., (1967) 409.
- 4 L. Arlinger, K.-I. Dahlqvist and S. Forsén, Acta Chem. Scand., 24 (1970) 662.
- 5 L. Arlinger, K.-I. Dahlqvist and S. Forsén, Acta Chem. Scand., 24 (1970) 672.
- 6 R. Jost, P. Rimmelin and J. Sommer, Tetrahedron Lett., (1971) 3005.
- 7 W. Nakamura and O. Michinore, Bull. Chem. Soc. Japan., 42 (1972) 2565.
- 8 M. Farnier and T. Drakenberg, J. Chem. Soc. Perkin II, (1975) 337.
- 9 T.B. Grindley, A.R. Katritzky and R.D. Topsom, J. Chem. Soc. Perkin II, (1975) 443.
- 10 T. Drakenberg, R. Jost and J. Sommer, Chem. Commun., (1974) 1011.
- 11 B.P. Roques, S. Combrisson and F. Wehrli, Tetrahedron Lett., (1975) 1047.
- 12 M. Rosenblum, J. Amer. Chem. Soc., 81 (1959) 4530.
- 13 M. Rosenblum, J.O. Santer and W.G. Howells, J. Amer. Chem. Soc., 85 (1963) 1450.
- 14 M. Rosenblum, A.K. Banerjee, N. Danieli, R.W. Fish and V. Schlatter, J. Amer. Chem. Soc., 85 (1963) 316.
- 15 P.J. Graham, R.V. Lindsay, G.W. Parshall, M.L. Peterson and G.M. Whitman, J. Amer. Chem. Soc., 79 (1957) 3416.
- 16 N. Weliky and E.S. Gould, J. Amer. Chem. Soc., 79 (1957) 2742.
- 17 M.D. Rausch, E.O. Fischer and H. Grubert, J. Amer. Chem. Soc., 82 (1960) 76.
- 18 R.B. Woodward, M. Rosenblum and M.C. Whiting, J. Amer. Chem. Soc., 74 (1952) 3458.
- 19 J.K. Lindsay and C.R. Hauser, J. Org. Chem., 22 (1957) 355.
- 20 A. Lidén, C. Roussel, T. Liljefors, M. Chanon, R.E. Carter, J. Metzger and J. Sandström, J. Amer. Chem. Soc., in press.
- 21 R.B. Johannesen, J.A. Ferretti and R.K. Harris, J. Magn. Reson., 3 (1970) 84.
- 22 M.D. Rausch and A. Siegel, J. Organometal. Chem., 17 (1969) 117.
- 23 D.A. Kleier and G. Binsch, J. Magn. Reson., 3 (1970) 146 (corrected version).
- 24 H.S. Gutowsky and C.H. Holm, J. Chem. Phys., 25 (1956) 1228.
- 25 S. Glasstone, K.J. Laidler and H. Eyring, Theory of Rate Processes, McGraw-Hill, New York, N.Y., 1941, p. 195 ff.
- 26 A.N. Nesmeyanov, P.V. Petrovskii, L.A. Fedorov, V.I. Robas and E.I. Fedin. J. Struct. Chem. USSR, 14 (1973) 42.
- 27 I.O. Sutherland in E.F. Mooney (Ed.), "Annual Reports on NMR Spectroscopy", Vol. 4, Academic Press, London, 1971, p. 82.
- 28 E.M. Arnett and R.D. Bushick, J. Org. Chem., 27 (1964) 111.
- 29 H.C. Brown and Y. Okamoto, J. Amer. Chem. Soc., 80 (1958) 4979.
- 30 (a) M. Cais, Organometal. Chem. Rev., (1966) 436; (b) T.D. Turbitt and W.E. Watts, J. Chem. Soc.
- Perkin II, (1974) 177; (c) T.D. Turbitt and W.E. Watts, J. Chem. Soc. Perkin II, (1974) 185.
- 31 G.C. Levy, Tetrahedron Lett., (1972) 3709.
- 32 F.A. Miller, W.G. Fateley and R.E. Witkowski, Spectrochim. Acta A, 23 (1967) 891.
- 33 R.K. Kakar, E.A. Rinehart, C.R. Quade and T. Kojima, J. Chem. Phys., 52 (1970) 3803.
- 34 N.L. Allinger and T. Liljefors, J. Amer. Chem. Soc., in press.
- 35 T.B. Grindley, A.R. Katritzky and R.D. Topsom, J. Chem. Soc. Perkin II, (1974) 289.
- 36 T. Drakenberg, to be published.
- 37 M.C. Fournié-Zaluski, C. Jaureguiherry and B. Roques, Tetrahedron Lett., (1973) 4177.
- 38 J. Trotter and A.C. MacDonald, Cryst. Acta, 21 (1966) 359.